V2.0 使用说明书

时间内容2023/03/15第一版

一、控制器简介

1、外观

2、功能

- 适用于BH系列磁流变阻尼器的控制器
- 该控制器可实时调整电流输出,控制BH系列磁流变阻尼器的阻尼力大小
- 该控制器附带多种外设口,是一块多功能嵌入式开发板
- 使用STM32H750作为主控芯片,高达480MHz主频,1MB RAM 128KB片内 Flash 16/32MB片外FLASH
- 可选配触摸屏,做丰富的显示输出展示

序号 功能名称 描述

序号	功能名称	描述
1	可控大电流输出	1通道 , 0-3A , 36V MAX
2	输出闭环采样电路	可软件实现恒流(CC)控制
3	5V输出	4通道,500mA
4	UART串口	3通道
5	12C	3通道
6	AD转换	模式1:5通道单端(0-5V) 模式2:1通道单端(0-5V),2通道差分(-5 - +5V)
7	DA转换	通道1 : 0-10V 通道2 : -5 - +5V
8	IO输入	8通道
9	脉冲输入	2通道
10	RTC	实时时钟
11	触摸屏	IPS 4.3寸高清串口屏交互(选配)

3、清单

名称 型号 数量

名称	型号	数量
控制器	BHV2.0	1
HMI触屏(选配)	DC80480AM043_1011_0C	1
编程线	STLINKV2 SWD	1
串口线	CH340 TTL转USB	1

4、供电

控制器需要接入2路DC供电

- (1) 2) 脚为控制电路供电,输入DC12-24V
- ③④脚为大电流输出可调电路供电,输入DC12-36V
 只有当1-4脚正常供电情况下,控制器才能正常工作。
 ③④脚输入的电压决定了所带负载的最大功率。
 如:
- 带1只阻尼器,内阻5Ω,电流可调0-3A,负载最大电压U=IR=3*5=15V,此时,③④脚要输入如24V,50W才能满足功率要求
- 带2只同型号阻尼器,并联,单只内阻5Ω,电流可调0-1.5A(控制器最大输出 3A,并联分流),负载最大电压U=IR=1.5*5=7.5V,此时,③④脚要输入如 12V,25W才能满足功率要求 请根据实际需求,预留一些功率余量,另外购买功率合适的开关电源,供给直流 电以满足使用需求。

二、开发环境安装

考资料包中文档【MDK安装及使用.pdf】第1-11页。 所提供软件仅作学习研究,请在下载后24小时内删除,如有需要请购买正版。

1、KeiluVision5安装

开发IDE 文件:01 MDK5.25.7z

2、STM32H7安装

文件:02 STM32H7安装包.7z

3、STLINK驱动安装

用于烧录程序 文件:03 ST LINK驱动.zip

4、串口CH340驱动

用于上位机串口通信 文件:04 CH340驱动(USB串口驱动)_XP_WIN7共用.7z

三、功能模块使用

1、目录结构

BSP	2022-12-13 16:26	文件夹	
CMSIS	2022-12-13 15:05	文件夹	
CNTLR	2022-12-15 10:25	文件夹	
HAL	2022-12-08 10:32	文件夹	
HMI	2022-12-08 10:43	文件夹	
MDK	2022-12-15 13:46	文件夹	
STM32H7xx_HAL_Driver	2022-12-08 10:32	文件夹	
System	2022-12-08 10:32	文件夹	
User	2022-12-15 10:17	文件夹	
💼 CMSIS.zip	2020-10-27 0:09	好压 ZIP 压缩文件	287 KB
💿 keilkill.bat	2017-10-30 22:03	Windows 批处理	1 KB

- BSP: 所有外设及功能模块的代码
- HAL: FATFS库
- CNTLR:控制器相关功能模块实现
- MDK: 工程项目文件, Project.uvprojx
- STM32H7xx_HAL_Driver: STM32提供的库
- User: main.c文件

安装好

双击"MDK\Project.uvprojx"即可打开IDE进行程序编写。由于uv5对编写程序 不太友好,建议使用其他三方IDE如

进行代码编写后再在uv5中进行编译下载操作。

2、HMI触屏

控制器可选配一块触摸屏,使用232串口和控制器连接,已编写好相关控制交互例程,并提屏幕源码。

2.1 简介

项目	说明
型号	DC80480AM043_1011_0C (RS232/TTL,电容触摸)
核心处理器	400M SOC处理器
操作系统	无操作系统,上电即可运行
协议类型	默认大彩组态指令集,上位机可配置运行MODBUS RTU、XGUS协议
脚本语言	LUA脚本, 屏内部可运行用户编写的逻辑、协议和算法功能
尺寸	4.3寸
分辨率	800×480
安装方向	支持0、90、180和270度旋转安装显示
存储空间	128Mbit
字库	内置矢量字体 , 边缘抗锯齿处理 , 支持任意大小ASCII、GBK、GB2312、 UNICODE (全球语言) 字库 , 也可自定义任意电脑字体显示
图片存储	支持JPEG、PNG压缩,支持任意大小图片存储。
颜色	65K色,16位RGB
电压	4.5-30V

项目	说明
功耗	休眠: 0.6W 背光最暗: 0.9W 背光最亮: 1.2W
通讯方式	RS232/TTL(出厂默认232电平 , 短接J5为TTL电平)
通讯波特率	1200~921600bps,典型波特率:115200bps
通讯接插件 规格	XH2.54-8P
图片本地下 载	SD 卡、串口、U 盘(需要定制)
固件本地/ 远程升级	插入SD卡本地升级/支持用户主板远程串口升级屏幕固件
图片远程升 级	支持用户远程利用自己主板串口升级屏幕相关图片工程、字库、配置文件等
实时时钟 (RTC)	支持时钟、定时器、倒计时等功能
屏有效显示 区(AA)	长 <i>宽 = 96.0mm</i> 54.9mm
产品尺寸 (长 <i>宽</i> 高)	121.7 <i>74.6mm</i> 15.8mm(MAX,含TP)
配套上位机 软件	VisualTFT®
工作温度	-20~+70°C
存储温度	-30~+80°C
AV输入	不支持
音频播放	不支持
音频接插件 规格	不支持
视频播放	MP4视频格式,与图片共用存储空间。
WIFI	不支持

2.2 参考资料

帮助文档:

http://doc.gz-dc.com/

开发IDE Visual TFT:

https://www.gz-dc.com/category/typeid/8#mainTop

串口协议:

https://www.gz-dc.com/category/typeid/410

3、功能模块

3.1 调试信息

UART1重定向了printf函数,可以直接输出到上位机。

推荐使用该函数打印:

//CNTLR\Utils\bh_debug.h

/// @brief 调试输出日志 (printf),注意只定义了256字节缓冲区,防止溢出
/// @param format
/// @param
void bh_debug_log(const char *format, ...);

//使用
bh_debug_log("set da pn5v = %0.3f", volPN5v);

上位机串口工具查看:

友善串口调试助手		_		×
文件(E) 编辑(E) 视图(V) 工具(I) 帮助(H)				
📄 🍋 🔚 🚥 🕂 — 🕨 📰 🖉 ≽ 📰 🌣				
串口设置 串 □ USB-SER(COM7 ▼ 波特率 115200 ▼ 数据位 8 ▼ 校验位 None ▼ 停止位 1 ▼ 流 控 None ▼ Image: None ▼ Image: None ▼ [1] sd card init [22] sd card [29.11/29.11GB] [30] dc hmi uart2 init [183] mpu6050 addr:0x68 init [339] mpu6050 addr:0x68 init [339] mpu6050 addr:0x68 init [339] mpu6050 addr:0x69 init Ien=5,12 23 34 78 FF [500] try sync hmi screen id [500] try sync hmi screen id => 1 [1020051] hmi screen id => 5 [1020065] pin0 io low [1020066] pin1 io low	SUCCESS SUCCESS			<
接收设置 [1020070] pin2 i0 10w ● ASCII Hex [1020070] pin3 io 1ow ☑ 自动换行 [1020074] pin5 io 1ow 显示发送 [1020078] pin7 io 1ow				*
 ✓ 显示时间 发送设置 ● ASCII ● Hex ● 重复发送 1000 ● ms 			发送	É
COM7 OPENED, 115200, 8, NONE, 1, OFF Rx: 2,100 Bytes Tx: 0 Bytes				

3.2 0-3A大电流输出

请确保按照要求给控制器供电。

此功能由DAC输出一个模拟电压控制电源输出电路输出相应的大功率电压,使用此功能需要初始化DAC外设:

```
// BSP\DAC\dac.h
// DAC初始化,用于大电流输出控制
Stm32DAC_Init();
```

根据负载电阻,控制电流,计算DAC值,并使能输出电压:

```
// CNTLR\output_mgr.c
/// @brief 大电流输出使能
/// @param current 电流
/// @param resistance 电阻
void output_mgr_enable(float current, float resistance)
{
    float dacValue = current * resistance * 100;
    DAC_SetVoltage((UINT)dacValue);
}
```

由于磁流变阻尼器负载是绕组线圈,负载电阻具有温漂特性,因此,在复杂的使用 工况下,建议使用软件恒流算法控制,以保证磁流变阻尼器恒定电流供应。

控制原理:读取电流、电压采样电路的AD值,实时计算负载电阻并目标值对比,超 过设定的调整阈值,反馈修改输出电压,参考代码如下:

```
// CNTLR\mrf_cntlr_mgr.c
/// @brief 输出电流实时采样
void output realtime sample()
{
   // 采样
   static OUTPUT_SAMPLE_DATA sampleData = {0};
   output_sample(&sampleData);
    g_hmi_data.output_data.real_current = sampleData.current;
    g_hmi_data.output_data.real_voltage = sampleData.voltage;
   if (sampleData.current > 0)
    {
       g_hmi_data.output_data.real_resistance = sampleData.voltage /
sampleData.current;
    }
}
output mgr enable(current, resistance);
```

若选配屏幕,界面如下:

	- Abasa Bi			8
	₩ 博海磁流变-大电流输出		E→	
	设定电流:	实时电流: 0.505 实时电压: 2.638		
	输出状态:	负载电阻: 5.225	Ω	
220 50V 8V				
20 20 50 RVT RVT 220				
	23 SV GO			

输出开启后,连接负载,输出指示灯点亮:

3.3 AD输入/DA输出

3.3.1 DA输出

DA初始化:

```
// BSP\PWM\pwm.h
// PWM初始化 控制DA模拟量输出 10KHz
PWM_Init(10000, 1);
```

输出调用:

```
// BSP\POWER\power.h
/// @brief 输出模拟量电压值
/// @param chType
/// @param voltage
void da_voltage_output(DA_CHANNEL_TYPE chType, float voltage);
//正负5V输出
```

```
da_voltage_output(DA_CHANNEL_PN5V, -2.5f);
//0-10V输出
da_voltage_output(DA_CHANNEL_10V, 8.3);
```

3.3.2 AD输入

4通道AD初始化:

```
// BSP\ADS1115\iic_ads1115.h
IIC_ADS_Init();
```

输入调用:

```
// BSP\ADS1115\iic_ads1115.h
/// @brief 读取4通道模拟量
/// @param pData
/// @param chType 读取类型 AD_NORMAL AD_DIFF
void adc1115_read(PADS115_DATA pData, ADS1115_CH_TYPE chType);
//示例
ADS115_DATA data = {0};
adc1115_read(&data, AD_NORMAL);
float ch0 = data.ch0; //通道0
float ch1 = data.ch1;
//差分模式时,通道2/3无效
float ch2 = data.ch2;
float ch3 = data.ch3;
```

1通道AD(角度传感器)初始

// BSP\ADC\adc.h
// ADC初始化,角度传感器和输出电流电压采样
STM32_ADC_Init(ADC1, NULL);

调用:

// BSP\ADC\adc.h
/// @brief adc采样
/// @param pData
void adc_sample(PADC_SAMPLE_DATA pData);

ADC_SAMPLE_DATA sampleData; adc_sample(&sampleData); //角度传感器值 float angle = sampleData.adc_angle;

若选配屏幕,界面如下:

位置展示:

3.4 I2C输入

I2C这里以MPU6050 6轴陀螺仪演示 mpu6050初始化, I2C总线挂2个地址:

```
// BSP\MPU6050\mpu6050.h
/// @brief MPU初始化
/// @param addr
void mpu6050_init(uint8_t addr);
```

//示例
mpu6050_init(MPU_ADDR); // 初始化0x68
mpu6050_init(MPU_ADDR_VDD); // 初始化0x69

读取数据:

// BSP\MPU6050\mpu6050.h
/// @brief 读加速度值
/// @param addr 地址 MPU_ADDR/MPU_ADDR_VDD
/// @param pData

```
void mpu6050_read_accelerometer(uint8_t addr, PMPU6050_DATA pData);
//示例
void mrf_cntlr_read_mpu6050(BYTE addr, PGYROSCOPE_ACC_DATA pData)
{
    static MPU6050_DATA data = {0};
    mpu6050_read_accelerometer(addr, &data);
    pData->x = mpu6050_to_g(data.x);
    pData->y = mpu6050_to_g(data.y);
    pData->z = mpu6050_to_g(data.z);
}
```

若选配屏幕,界面如下:

3.5 IO/脉冲输入

IO输入支持12V/24V 初始化IO

// BSP\I0_Input\I0_Input.h
I0_Input_Init();

读取IO状态:

/// @brief 读取IO状态,存入全局变量g_io_data
/// @param
void IO_Input_Read(void);

脉冲可同时使用2路,每一路都支持5V/24V输入

初始化脉冲

```
/// @brief 5v 24v 2通道脉冲初始化
void pulse_init()
{
    Tim5_CapInit(FREQ_COUNTER, pulse_isr_ch1); // PA0
    Tim1_CapInit(FREQ_COUNTER, pulse_isr_ch2); // PA11
}
```

脉冲计数:

```
/// @brief 脉冲通道1中断回调
/// @param
void pulse_isr_ch1(void)
{
    if (TimCapHandle.Channel == HAL_TIM_ACTIVE_CHANNEL_1)
        {
            g_hmi_data.pulse.ch1_count++;
        }
}
/// @brief 脉冲通道2中断回调
/// @param
void pulse_isr_ch2(void)
{
```

```
if (TimCapHandle_TIM1.Channel == HAL_TIM_ACTIVE_CHANNEL_4)
{
    g_hmi_data.pulse.ch2_count++;
}
}
```

若选配屏幕,界面如下:

3.6 SD卡读写

初始化SD卡:

// BSP\LOG\log.h
sd_card_init();

写日志,默认存储到SD卡/Logs/下:

/// @brief 写日志到文件
/// @param fmt

```
/// @param
void cntlr_log_wirte(const char *fmt, ...);
```

3.7 EEPROM读写

初始化:

// BSP\24CXX\24cxx.h
EEPROM_Init();

读写:

```
// BSP\24CXX\24cxx.h
uint32_t EEPROM_Read(uint8_t *pBuffer, uint16_t ReadAddr, uint16_t
NumToRead);
uint32_t EEPROM_Write(uint8_t *pBuffer, uint16_t WriteAddr, uint16_t
NumToWrite);
```

3.8 RTC

RTC操作

```
// RTC初始化
RTC_Init(NULL);
//设置时间
void RTC_SetDateTime(_Calendar_obj datetime);
//读取时间
_Calendar_obj RTC_GetDateTime(void);
```